Quickstart#
MAMKit provides a modular interface for defining datasets, allowing users to load datasets from the literature, defining models, allowing users to compose models from pre-defined components or define custom models.
Moreover, the package provides benchmarking capabilities, enabling users to reproduce results from previous works.
The package also provides a structured interface for training models, enabling users to train models using PyTorch Lightning.
The following sections provide a brief overview of the package’s functionalities, including loading/adding datasets, models, and training models.
Loading a Dataset#
The example that follows illustrates how to load a dataset.
In this case, a dataset is loaded using the MMUSED
class from mamkit.data.datasets
, which extends the Loader
interface and implements specific functionalities for data loading and retrieval.
Users can specify task and input mode (text-only
, audio-only
, or text-audio
) when loading the data, with options
to use default splits or load splits from previous works. The example uses splits from Mancini et al. (2022).
The get_splits
method of the loader
returns data splits in the form of a data.datasets.SplitInfo
.
The latter wraps split-specific data, each implementing PyTorch’s Dataset
interface and compliant to the
specified input modality (i.e., text-only
).
from mamkit.data.datasets import UKDebates, InputMode
loader = UKDebates(
task_name='asd',
input_mode=InputMode.TEXT_ONLY,
base_data_path=base_data_path)
split_info = loader.get_splits('mancini-et-al-2022')
The Loader
interface also allows users to integrate methods defining custom splits as follows:
from mamkit.data.datasets import SplitInfo
def custom_splits(self) -> List[SplitInfo]:
train_df = self.data.iloc[:50]
val_df = self.data.iloc[50:100]
test_df = self.data.iloc[100:]
fold_info = self.build_info_from_splits(train_df=...)
return [fold_info]
loader.add_splits(method=custom_splits,
key='custom')
split_info = loader.get_splits('custom')
Adding a new Dataset#
To add a new dataset, users need to create a new class that extends the Loader
interface and implements the
required functionalities for data loading and retrieval.
The new class should be placed in the mamkit.data.datasets
module.
Loading a Model#
The following example shows how to instantiate a model with a configuration found in the literature.
This configuration is identified by a key, ConfigKey
, containing all the defining information.
The key is used to fetch the precise configuration of the model from the configs
package.
In particular, each model’s configuration class in configs
contains a dictionary of configuration parameters that
matches the ConfigKey
’s attributes and that links to the model’s specific parameters.
Subsequently, the model is retrieved from the models
package and configured with the specific parameters
outlined in the configuration.
from mamkit.configs.base import ConfigKey
from mamkit.configs.text import TransformerConfig
from mamkit.data.datasets import InputMode
config_key = ConfigKey(
dataset='mmused',
task_name='asd',
input_mode=InputMode.TEXT_ONLY,
tags={'anonymous', 'bert'})
config = TransformerConfig.from_config(
key=config_key)
model = Transformer(
model_card=config.model_card,
dropout_rate=config.dropout_rate
...)
Defining a custom Model#
The example below illustrates that defining a custom model is straightforward.
It entails creating the model within the models package, specifically by extending either the AudioOnlyModel
, TextOnlyModel
, or TextAudioModel
classes in the models.audio
, models.text
, or models.text_audio
modules, respectively, depending on the input modality handled by the model.
class Transformer(TextOnlyModel):
def __init__(
self,
model_card,
head,
dropout_rate=0.0,
is_transformer_trainable: bool = False,
): ...
from mamkit.models.text import Transformer
model = Transformer(
model_card='bert-base-uncased',
dropout_rate=0.1, ...)
Training a Model#
Our models are designed to be encapsulated into a PyTorch LightningModule
, which can be trained using PyTorch Lightning’s Trainer class.
The following example demonstrates how to wrap and train a model using PyTorch Lightning.
from mamkit.utility.model import to_lighting_model
import lightning
model = to_lighting_model(model=model,
num_classes=config.num_classes,
loss_function=...,
optimizer_class=...)
trainer = lightning.Trainer(max_epochs=100,
accelerator='gpu',
...)
trainer.fit(model,
train_dataloaders=train_dataloader,
val_dataloaders=val_dataloader)
Benchmarking#
The mamkit.configs
package simplifies reproducing literature results in a structured manner.
Upon loading the dataset, experiment-specific configurations can be easily retrieved via a configuration key.
This enables instantiating a processor using the same features processor employed in the experiment.
In the example below, we adopt a configuration akin to Mancini et al. (2022), employing a BiLSTM model with audio encoded with MFCCs features. Hence, we define a MFCCExtractor processor using configuration parameters.
from mamkit.configs.audio import BiLSTMMFCCsConfig
from mamkit.configs.base import ConfigKey
from mamkit.data.datasets import UKDebates, InputMode
from mamkit.data.processing import MFCCExtractor, UnimodalProcessor
from mamkit.models.audio import BiLSTM
loader = UKDebates(task_name='asd',
input_mode=InputMode.AUDIO_ONLY)
config = BiLSTMMFCCsConfig.from_config(
key=ConfigKey(dataset='ukdebates',
input_mode=InputMode.AUDIO_ONLY,
task_name='asd',
tags='mancini-et-al-2022'))
for split_info in loader.get_splits(
key='mancini-et-al-2022'):
processor =
UnimodalProcessor(
features_processor=MFCCExtractor(
mfccs=config.mfccs, ...))
split_info.train = processor(split_info.train)
...
model = BiLSTM(embedding_dim=
config.embedding_dim, ...)