

“Reasoning”, Reasoning and Argumentation

Una breve panoramica critica su LLM

Language Technologies Lab, Nov 20th, 2025

PhD. Federico Ruggeri

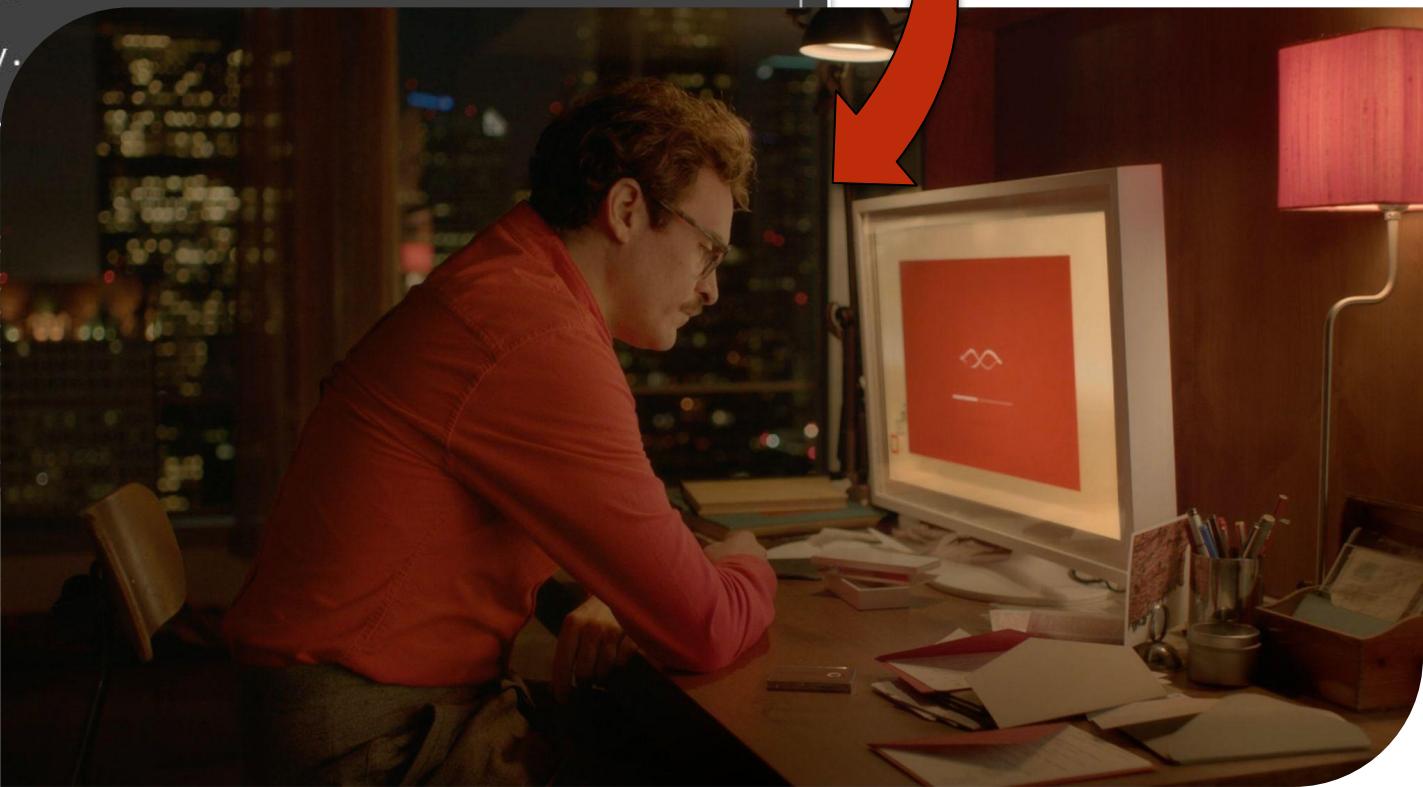
Perché ci interessa il tema

Eliza (1996)

```
> Hello, I am Eliza.  
* Hey!  
> Don't you ever say Hello?  
* Hello!  
> How are you today.. What would you like to discuss?  
* I'm depressed.  
> Do you enjoy being depressed?  
* No, I don't.  
> Why no?  
* Because I want to be happy.  
> Why do you want to be happy?  
* Because I'm tired od being depressed.  
> That is quite interesting.  
* I'm not sure
```

Eliza (1996)

```
> Hello, I am Eliza.  
* Hey!  
> Don't you ever say Hello?  
* Hello!  
> How are you today.  
* I'm depressed.  
> Do you enjoy beir  
* No, I don't.  
> Why no?  
* Because I want to  
> Why do you want to  
* Because I'm tired  
> That is quite int  
* I'm not sure
```



Annual Meeting of the Association for Computational Linguistics (2024)

Volumes

- Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) 865 papers
- Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) 77 papers
- Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations) 39 papers
- Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop) 47 papers
- Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 5: Tutorial Abstracts) 7 papers
- Findings of the Association for Computational Linguistics: ACL 2024 976 papers

Annual Meeting of the Association for Computational Linguistics (2024)

Volumes

- Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) 865 papers
- Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) 77 papers
- Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations) 39 papers
- Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop) 47 papers
- Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 5: Tutorial Abstracts) 7 papers
- Findings of the Association for Computational Linguistics: ACL 2024 976 papers

Annual Meeting of the Association for Computational Linguistics (2025)

Volumes

- Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) 1603 papers
- Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) 98 papers
- Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations) 65 papers
- Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop) 87 papers
- Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 5: Tutorial Abstracts) 9 papers
- Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track) 110 papers
- Findings of the Association for Computational Linguistics: ACL 2025 1388 papers

A

Annual Meeting of the Association for Computational Linguistics (2025)

Volumes

- Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) 1603 papers
- Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) 98 papers
- Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations) 65 papers
- Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop) 87 papers
- Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 5: Tutorial Abstracts) 9 papers
- Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track) 110 papers
- Findings of the Association for Computational Linguistics: ACL 2025 1388 papers

The 2025 Conference on Empirical Methods in Natural Language Processing

Suzhou, China

November 4-9, 2025

Volumes

- Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing [1810 papers](#)
- Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations [78 papers](#)
- Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track [193 papers](#)
- Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts [8 papers](#)
- Findings of the Association for Computational Linguistics: EMNLP 2025 [1406 papers](#)

The 2025 Conference on Empirical Methods in Natural Language Processing

Suzhou, China

November 4-9, 2025

Volumes

- Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing 1810 papers
- Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations 78 papers
- Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track 193 papers
- Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts 8 papers
- Findings of the Association for Computational Linguistics: EMNLP 2025 1406 papers

CONFERENCE ON
LANGUAGE
MODELING

University of Pennsylvania
Philadelphia, PA
October 7-9, 2024

Prompting

and

Reasoning

If a train is moving at 60 mph and travels for 3 hours, how far does it go?

(Plain) Prompting

The train travels 180 miles.

Plain response

If a train is moving at 60 mph and travels for 3 hours, how far does it go?

The train travels 180 miles.

Plain response

To determine the distance traveled, use the formula:

$$\text{Distance} = \text{Speed} \times \text{Time}$$

Given that the speed is 60 mph and the time is 3 hours:

$$\text{Distance} = 60 \text{ mph} \times 3 \text{ hours} = 180 \text{ miles}$$

So, the train travels 180 miles.

Response with intermediate reasoning steps

(Reason) Prompting

ChatGPT o1 ▾

Share

What is the last digit of 7^{999}

Reasoned about last digit of powers for a couple of seconds

1) Intermediate reasoning chain that is not explicitly shown to the user

ChatGPT o1 ▾

Share

What is the last digit of 7^{999}

1) Intermediate reasoning chain that is not explicitly shown to the user

Reasoned about last digit of powers for a couple of seconds

To find the last digit of 7^{999} , note that the last digits of powers of 7 repeat in a cycle of length 4:

$$\begin{aligned}7^1 &= 7 \quad (\text{last digit 7}) \\7^2 &= 49 \quad (\text{last digit 9}) \\7^3 &= 343 \quad (\text{last digit 3}) \\7^4 &= 2401 \quad (\text{last digit 1})\end{aligned}$$

Then it repeats: 7, 9, 3, 1, 7, 9, 3, 1, ...

To determine which of these four digits appears for 7^{999} , we look at $999 \bmod 4$:

$$999 \div 4 = 249 \text{ remainder 3.}$$

Since the remainder is 3, we take the third digit in the cycle (7, 9, 3, 1), which is 3.

2) Intermediate reasoning steps that are shown as part of the answer

ChatGPT o1 ✓

Share

What is the last digit of 7^{999}

1) Intermediate reasoning chain that is not explicitly shown to the user

Reasoned about last digit of powers for a couple of seconds

To find the last digit of 7^{999} , note that the last digits of powers of 7 repeat in a cycle of length 4:

$$\begin{aligned}7^1 &= 7 \quad (\text{last digit } 7) \\7^2 &= 49 \quad (\text{last digit } 9) \\7^3 &= 343 \quad (\text{last digit } 3) \\7^4 &= 2401 \quad (\text{last digit } 1)\end{aligned}$$

Then it repeats: 7, 9, 3, 1, 7, 9, 3, 1, ...

To determine which of these four digits appears for 7^{999} , we look at $999 \bmod 4$:

$$999 \div 4 = 249 \text{ remainder } 3.$$

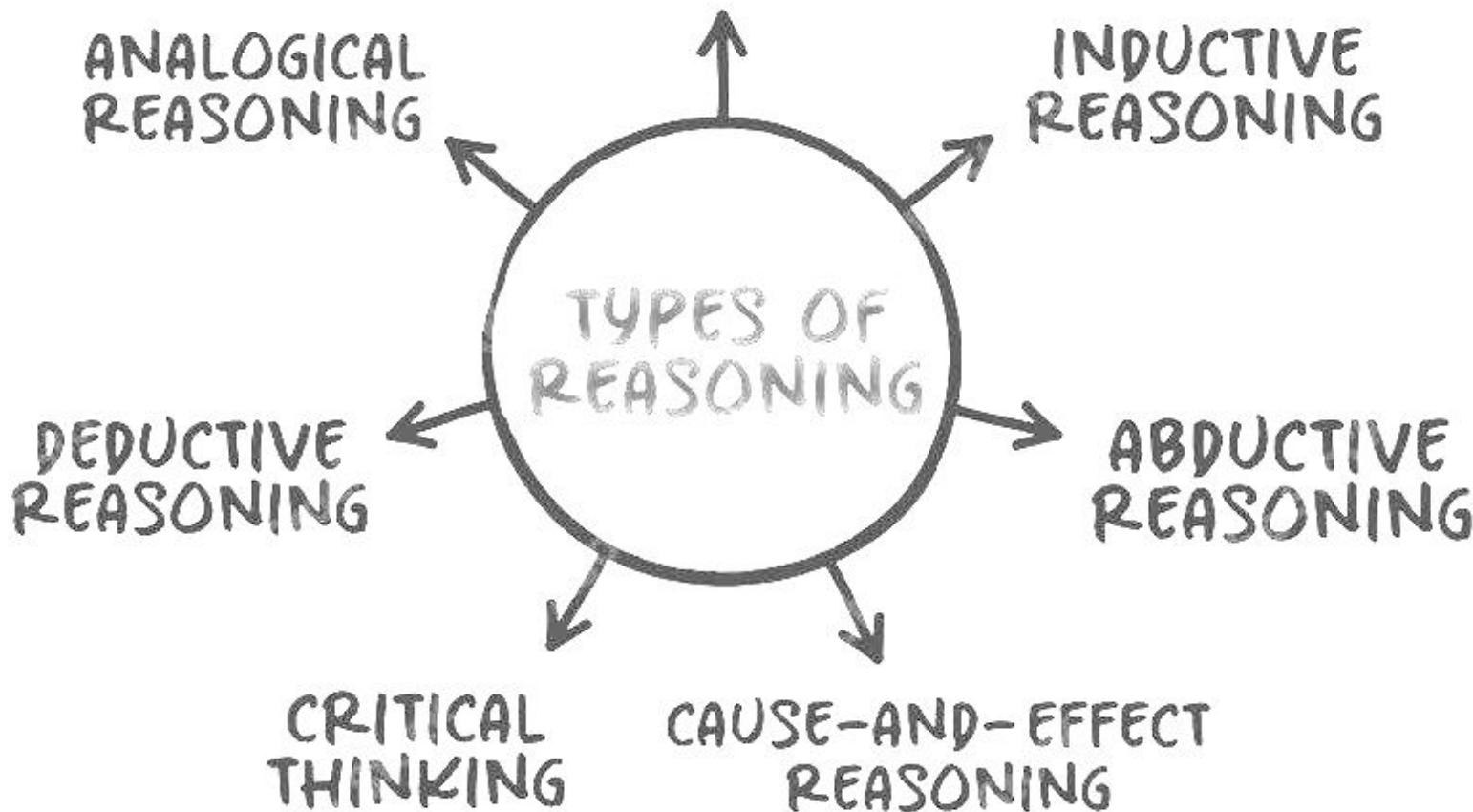
Since the remainder is 3, we take the third digit in the cycle (7, 9, 3, 1), which is 3.

Hence, the last digit of 7^{999} is 3.

The main answer

Punto 1: Reasoning

DECOMPOSITIONAL REASONING



Assessing the Reasoning Capabilities of LLMs in the context of Evidence-based Claim Verification

John Dougrez-Lewis^{1,*}, Mahmud Elahi Akhter^{2,*}, Federico Ruggeri³,
Sebastian Löbbers², Yulan He^{4,5}, Maria Liakata^{2,5}

¹University of Warwick, UK, ²Queen Mary University of London, UK
³University of Bologna, Italy, ⁴King's College London, UK
⁵The Alan Turing Institute, UK

j.dougrez-lewis@warwick.ac.uk, yulan.he@kcl.ac.uk, federico.ruggeri@unibo.it
{m.akhter, s.lobbers, m.liakata}@qmul.ac.uk

Abstract

Although LLMs have shown great performance on Mathematics and Coding related reasoning tasks, the reasoning capabilities of LLMs regarding other forms of reasoning are still an open problem. Here, we examine the issue of reasoning from the perspective of claim verification. We propose a framework designed to break down any claim paired with evidence into atomic reasoning types that are necessary for verification. We use this framework to create RECV, the first claim verification benchmark, incorporating real-world claims, to assess the deductive and abductive reasoning capabilities of LLMs. The benchmark comprises of three datasets, covering reasoning problems of increasing complexity. We evaluate three state-of-the-art proprietary LLMs under multiple prompt settings. Our results show that while LLMs can address deductive reasoning problems, they consistently fail in cases of abductive reasoning. Moreover, we observe that enhancing LLMs with rationale generation is not always beneficial. Nonetheless, we find that generated rationales are semantically similar to those provided by humans, especially in deductive reasoning cases.

1 Introduction

Large Language Models (LLMs) have shown remarkable proficiency in complex tasks where reasoning capabilities, such as logical deduction and semantic comparison, are paramount. Notable examples include solving MBA exams (Terwiesch, 2023), passing professional medical tests (Kung et al., 2023; Nori et al., 2023), performing quantitative reasoning (Lewkowycz et al., 2022), and communication games (Bakhtin et al., 2022, and et al., 2023; Gandhi et al., 2022).

that LLMs possess Theory of Mind (ToM) capabilities (Bubeck et al., 2023; Kosinski, 2023) were shown to be inaccurate (Ullman, 2023; Sileo and Lernould, 2023). In particular, despite appearing to manifest some form of ToM capabilities, LLMs mostly rely on shallow heuristics and spurious correlations (Shapira et al., 2023). Additionally, preliminary observations of emergent reasoning capabilities (Wei et al., 2022) were subsequently attributed to metric choice (Schaeffer et al., 2023), in-context learning (Lu et al., 2023b), and short-cuts (Kavumba et al., 2019).

These findings motivate the need for further research on the reasoning capabilities of LLMs, especially in high-stake real-world applications, where research on this topic is in its infancy. A notable example is fact-checking, where LLMs are considered to hold great potential for increased productivity even if at the same time they also facilitate bad actors in the proliferation of misinformation (Guo et al., 2023). Verifying information is challenging since models require both accurate veracity classification and strong rationale generation to be effective (Schlichtkrull et al., 2023). It is thus essential to understand the reasoning capabilities and limitations of LLMs in the context of fact-checking. In particular, we extend the current discussion around the reasoning abilities of LLMs, focusing on their ability to verify real-world claims.

In this work, we first propose a framework for breaking down complex claims into atomic reasoning steps. The motivation behind this is the lack of uniform terminology around reasoning. Most prominent are the terms

Measuring what Matters: Construct Validity in Large Language Model Benchmarks

Andrew M. Bean^{1,*} Ryan Othniel Kearns¹ Angelika Romanou²
Franziska Sofia Hafner¹ Harry Mayne¹

Jan Batzner^{3,4} Negar Foroutan² Chris Schmitz⁵ Karolina Korgul¹ Hunar Batra¹
Oishi Deb¹ Emma Beharry⁶ Cornelius Emde¹ Thomas Foster¹ Anna Gausen⁷
María Grandury^{8,9} Simeng Han¹⁰ Valentin Hofmann^{11,12} Luqain Ibrahim¹
Gabrielle Kaili-May Liu¹⁰ Hazel Kim¹ Hannah Rose Kirk^{1,7} Fangru Lin¹
Adel Bibi¹ Lennart Luettgau⁷ Jabez Magomere¹ Jonathan Ryström¹
Yarin Gal^{1,7} Antoine Bosselut² Ronald Clark¹ Arman Cohan¹⁰ Jakob Foerster¹
Scott A. Hale^{1,13} Inioluwa Deborah Raji¹⁴ Christopher Summerfield^{1,7}
Philip H.S. Torr¹ Cozmin Ududec⁷ Luc Rocher¹ Adam Mahdi^{1,*}

¹University of Oxford ²EPFL ³ Weizenbaum Institute Berlin
⁴Technical University Munich ⁵Centre for Digital Governance, Hertie School
⁶Stanford University ⁷UK AI Security Institute ⁸SomosNLP
⁹Universidad Politécnica de Madrid ¹⁰Yale University ¹¹Allen Institute for AI
¹²University of Washington ¹³Meedan ¹⁴UC Berkeley

Abstract

Evaluating large language models (LLMs) is crucial for both assessing their capabilities and identifying safety or robustness issues prior to deployment. Reliably measuring abstract and complex phenomena such as 'safety' and 'robustness' requires strong *construct validity*, that is, having measures that represent what matters to the phenomenon. With a team of 29 expert reviewers, we conduct a systematic review of 445 LLM benchmarks from leading conferences in natural language processing and machine learning. Across the reviewed articles, we find patterns related to the measured phenomena, tasks, and scoring metrics which undermine the validity of the resulting claims. To address these shortcomings, we provide eight key recommendations and detailed actionable guidance to researchers and practitioners in developing LLM benchmarks.

1 Introduction

In this work, we first propose a framework for breaking down complex claims into atomic reasoning steps. The motivation behind this is the lack of uniform terminology around reasoning. Most prominent are the terms 'deductive' and 'abductive' reasoning, which are often used interchangeably. In this work, we propose a framework for breaking down complex claims into atomic reasoning steps. The motivation behind this is the lack of uniform terminology around reasoning. Most prominent are the terms 'deductive' and 'abductive' reasoning, which are often used interchangeably.

1 Introduction

Large Language Models (LLMs) have shown remarkable proficiency in complex tasks where reasoning capabilities, such as logical deduction and semantic comparison, are paramount. Notable examples include solving MBA exams (Terwiesch, et al., 2023), passing professional medical tests (Kung et al., 2023; Nori et al., 2023), performing quantitative reasoning (Lewkowycz et al., 2022), and communication games (Bakhtin et al., 2022; et al., 2023; Gandhi et al., 2022).

Abstract

Although LLMs have shown great performance on Mathematics and Coding related reasoning tasks, the reasoning capabilities of LLMs regarding other forms of reasoning are still an open problem. Here, we examine the issue of reasoning from the perspective of claim verification. We propose a framework designed to break down any claim paired with evidence into atomic reasoning types that are necessary for verification. We use this framework to create RECV, the first claim verification benchmark, incorporating real-world claims, to assess the deductive and abductive reasoning capabilities of LLMs. The benchmark comprises of three datasets, covering reasoning problems of increasing complexity. We evaluate three state-of-the-art proprietary LLMs under multiple prompt settings. Our results show that while LLMs can address deductive reasoning problems, they consistently fail in cases of abductive reasoning. Moreover, we observe that enhancing LLMs with rationale generation is not always beneficial. Nonetheless, we find that generated rationales are semantically similar to those provided by humans, especially in deductive reasoning cases.

These findings motivate the need for further research on the reasoning capabilities of LLMs in high-stake real-world applications, research on this topic is in its infancy. A notable example is fact-checking, where LLMs are considered to hold great potential for increased productivity even if at the same time they also facilitate the proliferation of misinformation (Wei et al., 2023). Verifying information is challenging as models require both accurate veracity since models require both accurate veracity and strong rationale generation to be effective (Schlichtkrull et al., 2023). It is thus essential to understand the reasoning capabilities and limitations of LLMs in the context of fact-checking, in particular, we extend the current discussion of the reasoning abilities of LLMs, focusing on the ability to verify real-world claims.

In this work, we first propose a framework for breaking down complex claims into atomic reasoning steps. The motivation behind this is the lack of uniform terminology around reasoning. Most prominent are the terms 'deductive' and 'abductive' reasoning, which are often used interchangeably. In this work, we propose a framework for breaking down complex claims into atomic reasoning steps. The motivation behind this is the lack of uniform terminology around reasoning. Most prominent are the terms 'deductive' and 'abductive' reasoning, which are often used interchangeably.

Assessing the Reasoning Capabilities of LLMs in the context of Evidence-based Claim Verification

John Dougrez-Lewis^{1,*} Mahmud Elahi Akhter^{2,*} Federico Ruggeri³,
Sebastian Löbbers², Yulan He^{4,5}, Maria Liakata^{2,5},
¹University of Warwick, UK, ²Queen Mary University of London, UK
³University of Bologna, Italy, ⁴King's College London, UK
⁵The Alan Turing Institute, UK
j.dougrez-lewis@warwick.ac.uk, yulan.he@cl.ac.uk, federico.ruggeri@unibz.it, s.lobbers, m.liakata}@qmul.ac.uk

Punto 2: “Reasoning”?

Do Large Language Models Latently Perform Multi-Hop Reasoning?

Sohee Yang^{1,2} Elena Gribovskaya¹ Nora Kassner¹ Mor Geva^{3,4*} Sebastian Riedel^{1,2*}

¹Google DeepMind ²UCL ³Google Research ⁴Tel Aviv University

{soheeyang, egribovskaya, norakassner, pipek, srriedel}@google.com

Do Large Language Models Latently Perform Multi-Hop Reasoning?

Sohee Yang^{1,2} Elena Gribovskaya¹ Nora Kassner¹ Mor Geva^{3,4*} Sebastian Riedel^{1,2*}

Not All LLM Reasoners Are Created Equal

Arian Hosseini

Mila

arian.hosseini9@gmail.com

Alessandro Sordoni

Mila, Microsoft Research

Daniel Toyama
Google DeepMind

Aaron Courville
Mila

Rishabh Agarwal
Mila, Google DeepMind

Do Large Language Models Latently Perform Multi-Hop Reasoning?

Sohee Yang^{1,2} Elena Gribovskaya¹ Nora Kassner¹ Mor Geva^{3,4*} Sebastian Riedel^{1,2*}

Not All LLM Reasoners Are Created Equal

Arian Hosseini

Alessandro Sordoni

Is ChatGPT a Good Causal Reasoner? A Comprehensive Evaluation.

Jinglong Gao Xiao Ding* Bing Qin Ting Liu

Research Center for Social Computing and Information Retrieval

Harbin Institute of Technology, China

{jlgao,xding,qinb,tliu}@ir.hit.edu.cn

Do Large Language Models Latently Perform Multi-Hop Reasoning?

Sohee Yang^{1,2} Elena Gribovskaya¹ Nora Kassner¹ Mor Geva^{3,4*} Sebastian Riedel^{1,2*}

Not All LLM Reasoners Are Created Equal

Arian Hosseini

Alessandro Sordoni

Is ChatGPT a Good Causal Reasoner? A Comprehensive Evaluation.

Jinglong Gao Xiao Ding* Bing Qin Ting Liu

Research Center for Social Computing and Information Retrieval

The Illusion of Thinking:
Understanding the Strengths and Limitations of Reasoning Models
via the Lens of Problem Complexity

Parshin Shojaee*† Iman Mirzadeh* Keivan Alizadeh
Maxwell Horton Samy Bengio Mehrdad Farajtabar

Do Large Language Models Latently Perform Multi-Hop Reasoning?

Sohee Yang^{1,2} Elena Gribovskaya¹ Nora Kassner¹ Mor Geva^{3,4*} Sebastian Riedel^{1,2*}

Not All LLM Reasoners Are Created Equal

Arian Hosseini

Alessandro Sordoni

Is ChatGPT a Good Causal Reasoner? A Comprehensive Evaluation.

Jinglong Gao Xiao Ding* Bing Qin Ting Liu
Research Center for Social Computing and Information Retrieval

The Illusion of Thinking:
Understanding the Strengths and Limitations of Reasoning Models
via the Lens of Problem Complexity

Parshin Shojaee*† Iman Mirzadeh* Keivan Alizadeh
Maxwell Horton Samy Bengio Mehrdad Farajtabar

Emergent Analogical Reasoning in Large Language Models

Taylor Webb^{1,*}, Keith J. Holyoak¹, and Hongjing Lu^{1,2}

¹Department of Psychology

²Department of Statistics

University of California, Los Angeles, CA, USA

Do Large Language Models Latently Perform Multi-Hop Reasoning?

Sohee Yang^{1,2} Elena Gribovskaya¹ Nora Kassner¹ Mor Geva^{3,4*} Sebastian Riedel^{1,2*}

Not All LLM Reasoners Are Created Equal

Arian Hosseini

Alessandro Sordoni

Is ChatGPT a Good Causal Reasoner? A Comprehensive Evaluation.

Jinglong Gao Xiao Ding* Bing Qin Ting Liu

Research Center for Social Computing and Information Retrieval

The Illusion of Thinking:
Understanding the Strengths and Limitations of Reasoning Models
via the Lens of Problem Complexity

Parshin Shojaee*† Iman Mirzadeh* Keivan Alizadeh
Maxwell Horton Samy Bengio Mehrdad Farajtabar

Emergent Analogical Reasoning in Large Language Models

Taylor Webb^{1,*}, Keith J. Holyoak¹, and Hongjing Lu^{1,2}

LARGE LANGUAGE MODELS AS ANALOGICAL REASONERS

Michihiro Yasunaga,^{1,2} Xinyun Chen,¹ Yujia Li,¹ Panupong Pasupat,¹ Jure Leskovec,²
Percy Liang,² Ed H. Chi,¹ Denny Zhou¹

¹ Google DeepMind ² Stanford University
myasu@cs.stanford.edu, {xinyunchen,dennyzhou}@google.com

Do Large Language Models Latently Perform Multi-Hop Reasoning?

Sohee Yang^{1,2} Elena Gribovskaya¹ Nora Kassner¹ Mor Geva^{3,4*} Sebastian Riedel^{1,2*}

Not All LLM Reasoners Are Created Equal

Arian Hosseini

Alessandro Sordoni

Is ChatGPT a Good Causal Reasoner? A Comprehensive Evaluation.

Jinglong Gao Xiao Ding* Bing Qin Ting Liu

Research Center for Social Computing and Information Retrieval

The Illusion of Thinking:
Understanding the Strengths and Limitations of Reasoning Models
via the Lens of Problem Complexity

Parshin Shojaee*† Iman Mirzadeh* Keivan Alizadeh
Maxwell Horton Samy Bengio Mehrdad Farajtabar

Emergent Analogical Reasoning in Large Language Models

Taylor Webb^{1,*}, Keith J. Holyoak¹, and Hongjing Lu^{1,2}

LARGE LANGUAGE MODELS AS ANALOGICAL REASONERS

Michihiro Yasunaga,^{1,2} Xinyun Chen,¹ Yujia Li,¹ Panupong Pasupat,¹ Jure Leskovec,²
Percy Liang,² Ed H. Chi,¹ Denny Zhou¹

¹ Google DeepMind ² Stanford University

Testing the General Deductive Reasoning Capacity of Large Language Models Using OOD Examples

Abulhair Saparov[†] Richard Yuanzhe Pang[†] Vishakh Padmakumar[†] Nitish Joshi[†]

Seyed Mehran Kazemi[△]

Najoung Kim^{△,β,*}

He He[†]

Do Large Language Models Latently Perform Multi-Hop Reasoning?

Sohee Yang^{1,2} Elena Gribovskaya¹ Nora Kassner¹ Mor Geva^{3,4*} Sebastian Riedel^{1,2*}

Not All LLM Reasoners Are Created Equal

Arian Hosseini

Alessandro Sordoni

Is ChatGPT a Good Causal Reasoner? A Comprehensive Evaluation.

Jinglong Gao Xiao Ding* Bing Qin Ting Liu

Research Center for Social Computing and Information Retrieval

The Illusion of Thinking:
Understanding the Strengths and Limitations of Reasoning Models
via the Lens of Problem Complexity

Parshin Shojaee*† Iman Mirzadeh* Keivan Alizadeh
Maxwell Horton Samy Bengio Mehrdad Farajtabar

Emergent Analogical Reasoning in Large Language Models

Taylor Webb^{1,*}, Keith J. Holyoak¹, and Hongjing Lu^{1,2}

LARGE LANGUAGE MODELS AS ANALOGICAL REASONERS

Michihiro Yasunaga,^{1,2} Xinyun Chen,¹ Yujia Li,¹ Panupong Pasupat,¹ Jure Leskovec,²
Percy Liang,² Ed H. Chi,¹ Denny Zhou¹

¹ Google DeepMind ² Stanford University

Testing the General Deductive Reasoning Capacity of Large Language Models Using OOD Examples

Abulhair Saparov[†] Richard Yuanzhe Pang[†] Vishakh Padmakumar[†] Nitish Joshi[†]

The Illusion of the Illusion of Thinking

A Comment on Shojaee et al. (2025)

A. Lawsen*

Measuring what Matters: Construct Validity in Large Language Model Benchmarks

Andrew M. Bean^{1*} Ryan Othniel Kearns¹ Angelika Romanou²
Franziska Sofia Hafner¹ Harry Mayne¹

Jan Batzner^{3,4} Negar Foroutan² Chris Schmitz⁵ Karolina Korgul¹ Hunar Batra¹
Oishi Deb¹ Emma Beharry⁶ Cornelius Emde¹ Thomas Foster¹ Anna Gausen⁷
Maria Grandury^{8,9} Simeng Han¹⁰ Valentin Hofmann^{11,12} Lujain Ibrahim¹
Gabrielle Kaili-May Liu¹⁰ Hazel Kim¹ Hannah Rose Kirk^{1,7} Fangru Lin¹ Jabez Magomere¹ Jonathan Ryström¹
Adel Bibi¹ Antoine Bosselut² Ronald Clark¹ Arman Cohan¹⁰ Jakob Foerster¹
Yarin Gal^{1,7} Scott A. Hale^{1,13} Inioluwa Deborah Raji¹⁴ Christopher Summerfield^{1,7}
Philip H.S. Torr¹ Cozmin Ududec⁷ Luc Rocher¹ Adam Mahdi^{1*}

¹University of Oxford ²EPFL ³Weizenbaum Institute Berlin
⁴Technical University Munich ⁵Centre for Digital Governance, Hertie School
⁶Stanford University ⁷UK AI Security Institute ⁸SomosNLP
⁹Universidad Politécnica de Madrid ¹⁰Yale University ¹¹Allen Institute for AI
¹²University of Washington ¹³Meedan ¹⁴UC Berkeley

Abstract

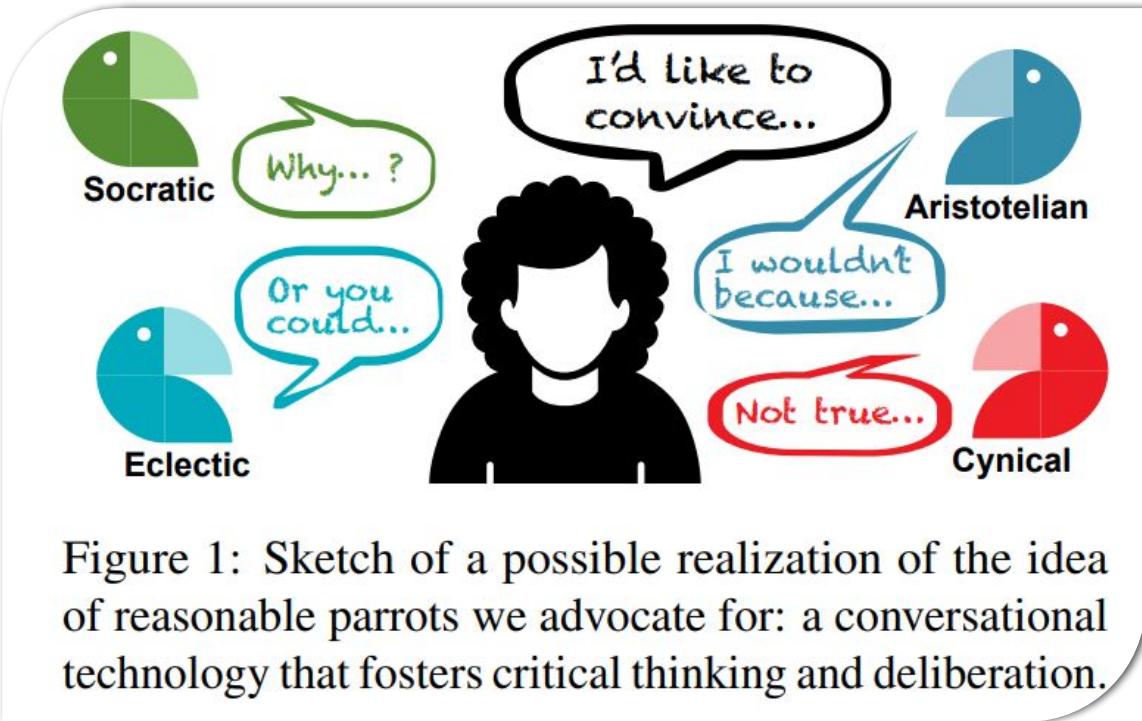
Evaluating large language models (LLMs) is crucial for both assessing their capabilities and identifying safety or robustness issues prior to deployment. Reliably measuring abstract and complex phenomena such as ‘safety’ and ‘robustness’ requires strong *construct validity*, that is, having measures that represent what matters to the phenomenon. With a team of 29 expert reviewers, we conduct a systematic review of 445 LLM benchmarks from leading conferences in natural language processing and machine learning. Across the reviewed articles, we find patterns related to the measured phenomena, tasks, and scoring metrics which undermine the validity of the resulting claims. To address these shortcomings, we provide eight key recommendations and detailed actionable guidance to researchers and practitioners in developing LLM benchmarks.

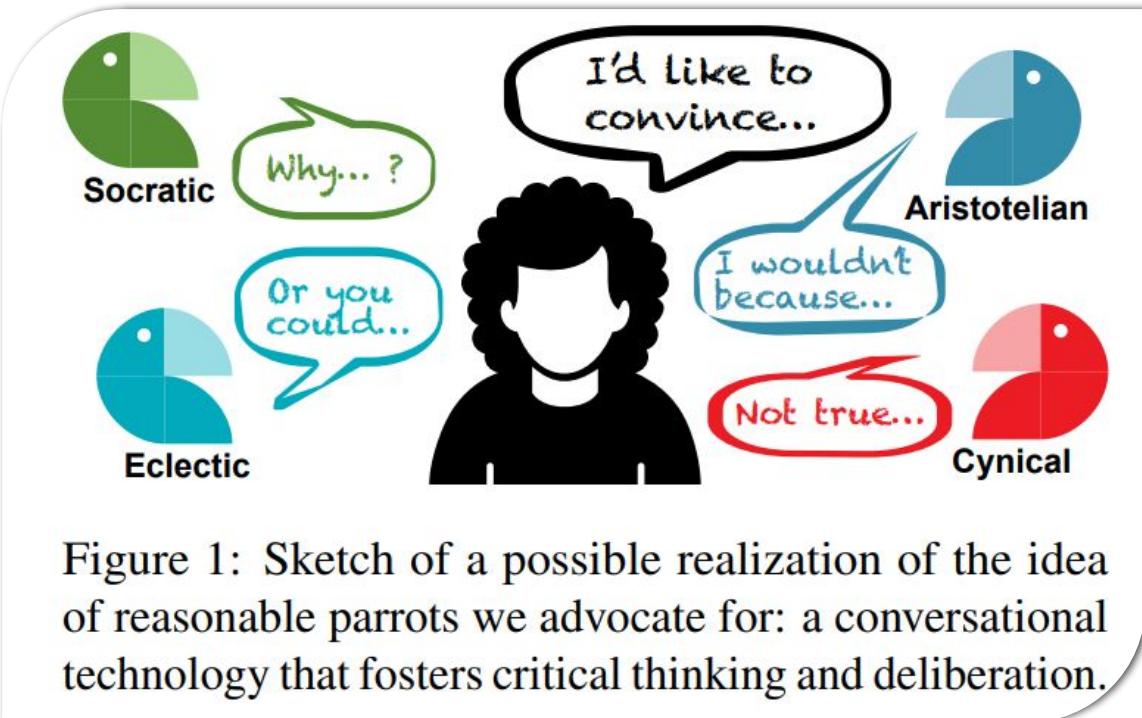
1 Introduction

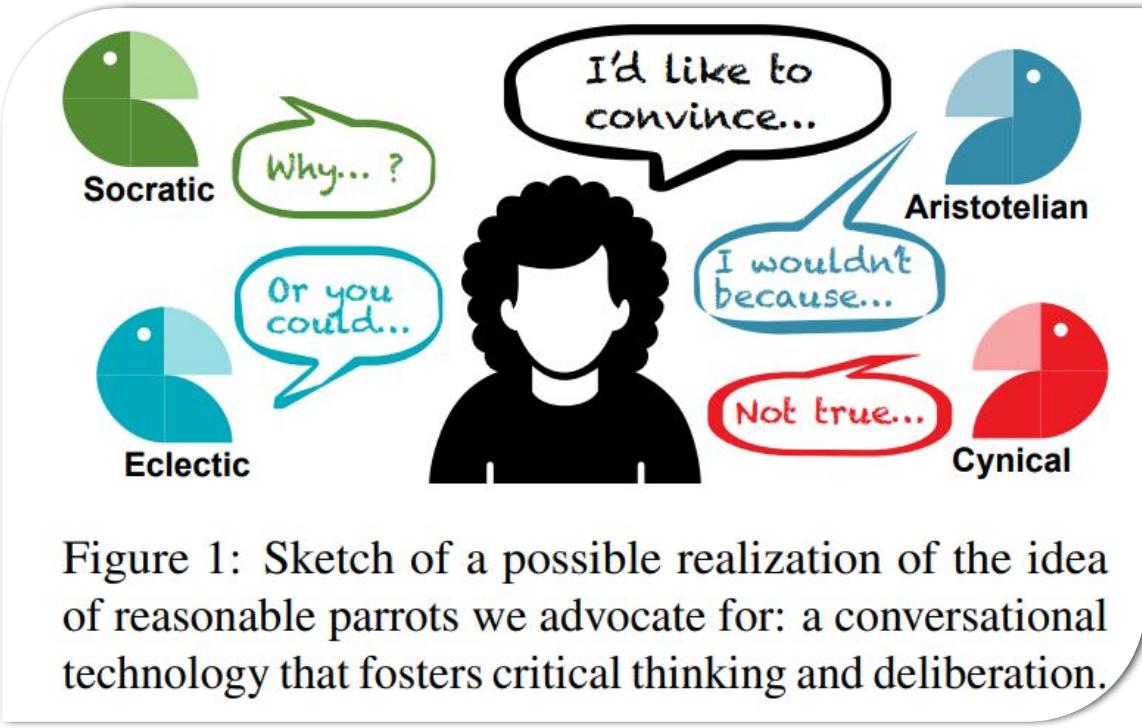
Benchmarks and evaluations play a critical role in the development of AI research [1, 2]. Creating a benchmark requires defining concrete tasks and metrics that measure the ‘intelligence’ of a model. It is often the case that these benchmarks are not well-defined, leading to ambiguous and unreliable results. This lack of clarity can lead to biased and unfair evaluations, which can in turn reinforce harmful biases and perpetuate social inequalities. To address this issue, we propose a new approach to benchmarking that focuses on the *construct validity* of the benchmarks. This approach involves a systematic review of existing benchmarks and a detailed analysis of their design, implementation, and evaluation. By doing so, we can identify patterns and trends that can help us better understand the strengths and weaknesses of different benchmarks. This can ultimately lead to more accurate and reliable evaluations, which can help us build more responsible and ethical AI systems.

Don't really know what benchmarks are measuring!

Punto 3: Argumentation



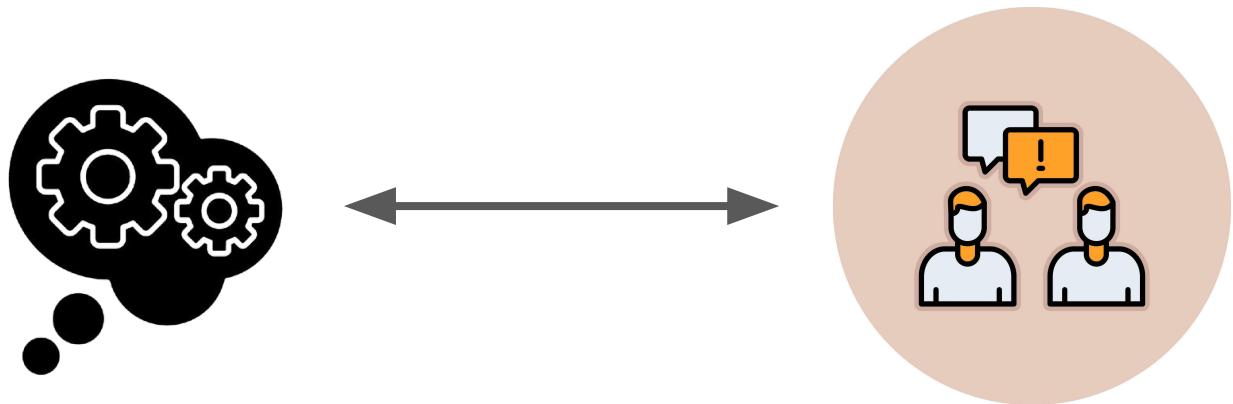


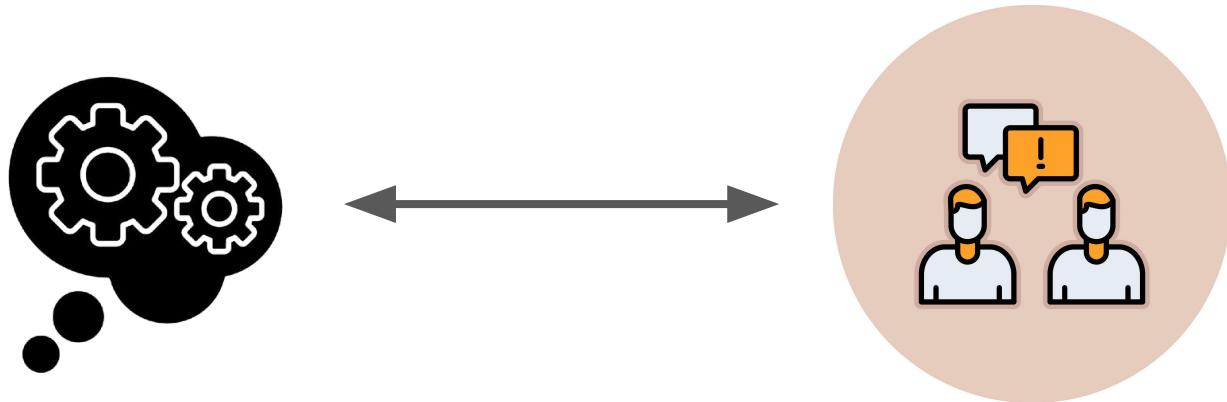


“Ad populum fallacy”

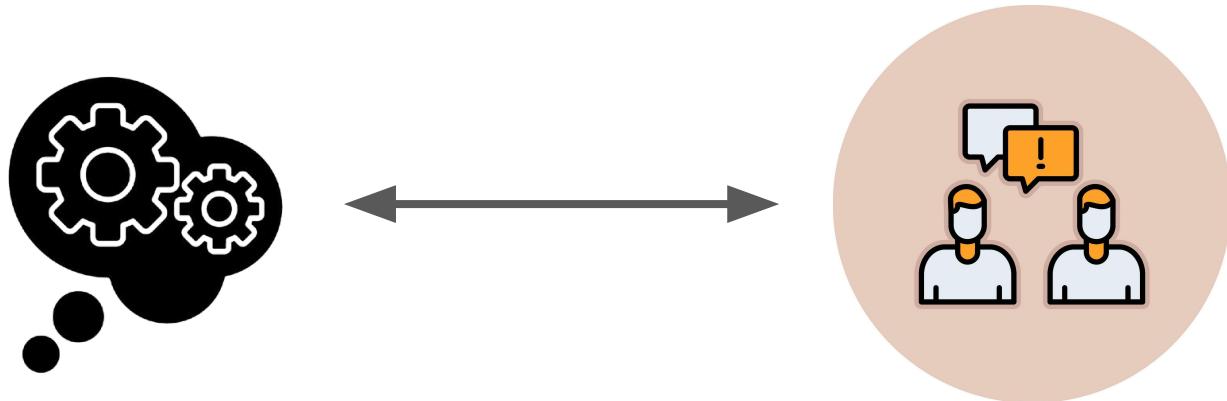
Argue by design

Figure 1: Sketch of a possible realization of the idea of reasonable parrots we advocate for: a conversational technology that fosters critical thinking and deliberation.





Argumentation represents, analyzes and evaluates the process of reaching conclusions on the basis of available information.



Argumentation represents, analyzes and evaluates the process of reaching conclusions on the basis of available information.

We can evaluate LLMs based on their ability to address argument mining tasks.

Proposal for ArgMining 2026, the 13th Workshop on Argument Mining and Reasoning

**Mohamed Elaraby, Annette Hautli-Janisz, John Lawrence,
Elena Musi, Julia Romberg, and Federico Ruggeri**

- Explainability in argument mining through reasoning;

Proposal for ArgMining 2026, the 13th Workshop on Argument Mining and Reasoning

**Mohamed Elaraby, Annette Hautli-Janisz, John Lawrence,
Elena Musi, Julia Romberg, and Federico Ruggeri**

- Explainability in argument mining through reasoning;
- Modeling, assessing, and critically reflecting on the argumentation capabilities of LLMs;

Proposal for ArgMining 2026, the 13th Workshop on Argument Mining and Reasoning

**Mohamed Elaraby, Annette Hautli-Janisz, John Lawrence,
Elena Musi, Julia Romberg, and Federico Ruggeri**

- Explainability in argument mining through reasoning;
- Novel benchmarks in argument mining that cater to the recent developments in LLM reasoning as a whole;
- Modeling, assessing, and critically reflecting on the argumentation capabilities of LLMs;

Proposal for ArgMining 2026, the 13th Workshop on Argument Mining and Reasoning

**Mohamed Elaraby, Annette Hautli-Janisz, John Lawrence,
Elena Musi, Julia Romberg, and Federico Ruggeri**

- Explainability in argument mining through reasoning;
- Modeling, assessing, and critically reflecting on the argumentation capabilities of LLMs;
- Guidelines for assessing and documenting the reasoning process(es) reflected in benchmarks;
- Novel benchmarks in argument mining that cater to the recent developments in LLM reasoning as a whole;

Proposal for ArgMining 2026, the 13th Workshop on Argument Mining and Reasoning

**Mohamed Elaraby, Annette Hautli-Janisz, John Lawrence,
Elena Musi, Julia Romberg, and Federico Ruggeri**

- Explainability in argument mining through reasoning;
- Modeling, assessing, and critically reflecting on the argumentation capabilities of LLMs;
- Guidelines for assessing and documenting the reasoning process(es) reflected in benchmarks;
- Novel benchmarks in argument mining that cater to the recent developments in LLM reasoning as a whole;
- Reflection on ethical aspects and societal impact of argument mining and LLM reasoning.

Grazie per l'attenzione!
